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FUNDAMENTALS OF NON-NEWTONIAN LIQUID FLOW ON SURFACES

1. INTRODUCTION

Chemical agents are delivered to targets in a number of different

ways. A comnmon feature of the delivery protocols is that the agents

originally constitute a large bulk of liquid, which is then somehow

fragmented or atomized, resulting in a cloud or array of small liquid

drops. In order to ensure that the drop sizes are large enough (Imm to 3mm)

that evaporation is not dominant, relatively large amounts of polymer

are added to the bulk liquid. The presence of the polymer directly

affects the process of break-up into droplets, and thus control the size

distribution of the drops.

As the drops are propagated through the environment or fall under the

influence of gravity, they respond to change in the ambient temperature,

pick up contaminants from the atmosphere and lose mass due to evaporation.

Eventually they strike targets, generally solid surfaces, adhere to these

surfaces, begin to spread.

In order to devise a procedure for the protection from and clean-up

of these agents, one must understand what controls the spreading process

and in particular the parameters that govern the rate of spreading. In

effect, the clean-up process is a spreading process in reverse; the removil

of a drop depends on similar parameters to those which control spreading.

In the present work we investigate the spreading of noIL-Newtonian

drops on smooth surfaces. The spreading rate thus depends on the surface

tension of the liquid-air interface, the contact-angle characteristics

of the solid-liquid-air system and the material properties of the liquid.

In particular we assess the effects on spreading of viscoelastic properties

of the liquid and exAmine the influence of gravity.

7
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The general features of the spreading-drop model are described in

the body of this report, 'together with a presentation and discussion of

the results of the calculations. The details of the calculations are

given in the Appendix.

2. MEMhANICS OF SPREADING

Drops that strike a smooth solid spread through two joint mechanisms,

contact-angle "pull" and capillary forces. Both contact-angle "pull".

and capillary spread are included in the present model.

N 2.1 Contact-Angle "•ill"

Figure 1 shows typical measurements of contact angle e versus contact

line speed uCX for liquid-gas systems. When liquid displaces gas uCL > 0

"and angle increases with speed. The advancing angle 0A is the limiting

angle for uCL 4 0. Thus, a drop placed on a solid with initial angle

e 0 > OA corresponds to a contact line with positive (outward) speed and

the drop is pulled outward at the contact line.

2,2 Capillary Spread

If the drop hits the solid and a- 0A the drop will spread as long

as the drop does not have the shape of a stable meniscus. Surface tension

modifies the shape, steepens the contact angle and spreading results.

3. MOLOGY

There are three general features comon to the motion of non-Newtonian

fluids: stress relaxation, normal stresses and shear thinning. In the

present formulation we employ a one parameter family of generalized Maxwell

fluids, each having a single relaxation time T. These models include all

three non-Newtonian effects while limiting cases suppress either stress

relaxation or shear thinning.

8
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4.~ -1
SLOPE "•

.0 I
' uCL

CONTACT LINE SPEED

Figure I: Illustration of how contact line speed varies with

contact angle
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3.1 Stress Relaxation

Stress relaxation is the time-dependent adjustment to rapid changeE

in stress, the time scale (scales) dependent on the relaxation time

(times) of the material.

3.2 Normal Stresses

Normal stresses are stresses that develop in, say, pure shear flows

in directions orthogonal to the applied force and are generated by the

nonlinear-behavior of the material.

3.3 Shear Thinning

The nonlinear behavior further allows the decrease of the apparent

shear viscosity B with shear rate y.

4. THE MODEL OF THE DROP

The drops of immediate interest are ones that have small initial

angle 00 and spread indefinitely (to final angle zero). We thus use an

approximate theory valid for drops whose shapes always have small slopes,

the so-called lubrication approximation. The method involves a systematic

asymptotic analysis which shows that inertial effects in the liquid ate

negligible. More importatly, it shows that if shear thinning behavior

is present, then it is more important than stress relaxation or normal

stresses. Thus, in this case the main rheological data required is the

zero shear rate viscosity ip0 and the changes of P with shear rate. On the

other hand, if the model uses a constitutive relation for which shear

thinning (and hence normal stresses) are absent, the stress relaxation

dominates.

The present model thus incorporates viscous, rheological and surface

tension effects in thc spreading process. The result of lubrication

10
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analysis is 4 simplified set of nonlinear partial differential equations

(plus initial aud boundary conditions) that require nume:ical methods for

solution. This qystem contai:us six non-dimensional pa. neters.

5. PARAMETERS

The dimensional quantities that enter the model are as follows:

p density of the liquid.

S0 zero-shear-rate viscosity of the liquid.

0 surface tension of the liquid-gas interface.

reciprocal of the slope at uL - 0 for the

characteristic e versus uCL as shown in

Figure 1. K has units of velocity.

6A advancing contact angle of tha drop.
A

T relaxation time of the Tliquid.

g magnitude of the gravitational acceleration.

V volume of the drop.

a0 Initial radius of the drop.

6 0 initial contact angle of the drop.

The above ten dimensional quantities form into six non-dimensional groups

that characterize the spreading of drops. These are as follows:

C "- Ocapillary number

o0

A 0 -- relaxation parameter #1

2
0 relaxation parameter #2

aO0

11



2
B pga 

Bond number
a

6OF a AA00 final contact angle

* V volume of the (axisymmetric) drop3
V,,

V--•- volume per unit depth of the (two-dimensional)

a00 drop.

The capillary number expresses the relative importance of contact-

angle "pull", measured by speed K80 , to capillary spread, measured by

ere/ 0. The relaxation parameter #1 measures the relaxation tine T versus

capillary effects. The relaxation parameter #2 measures the relaxation

time T for shear thinning versus capillary effects. Notice that X/e - 80

and since 60 is very small, stress relaxation effects are small compared

to those due to shear thinning except when the latter are absent. The

Bond number measures the effects of gravity (compared to surface tension)

when the plate is horizontal. We allow the possibility that the drop

ceases spreading at final angle OF. If 67 - 0, the drop spreads indefinitely.

In order to see the ranges of values taken by the various parameters,

we write down "typical" values for the dimensional quantities. We use

a0 - 0.25 cu, 6 0 - 0.1 rad - 5.70 V* 1.5 x 10 cm 3.a.30dynes/cmt

3
10 - 5 poise and p - 1 gM/cm . We have no information on the contact angle

constant K; we take K - 0.1 cm/sec. The relaxation time T can be obtained

from data on apparent viscosity versus shear rate and equation (2.44) of

the Appendix if we rewrite it in dimensional form. The apparent viscosity

pj of our model takes the form

12
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10
1= 2-2 (1)l+TY7

where V0 is the zero-shear-rate viscosity and y is the shear rate. From

the CSL data given to us, we estimate for Diethylmalonate thickened with

2.1% Polymethylmethacrylate that' - 1.0 sec; for Diethylmalonate

thickened with 5.27. Copolymer, T - 0.013 sec; for Diethylmalonate thickened

with 9.5. Elvacite 2041,-T - 0.0063 sac; for Methyl Salicylate thickened

with 4.5% Copolymer, T - 0.010 sec. . as, a practical upper limit for T is

about 1 sec. With this estimate we find that "typical" values for the

parameters are as follows:

C t 1.6

X P 2.5 x 10"2

S$ 2.5 x 10"1 (2)

B ý 2.1

V Rd1.0

Clearly, the estimates (2) are crude and each parameter has a range of

possible values. We shalV use e - 5.0, a very laM value for the calcu-

lations in order to exaggerate the effects of viscoelasticity.

6. RESULTS

We use the spreading of a Newtonian liquid drop as the standard

against which to compare results for non-Newtonian cases. We thus first

present results for this case. Since spreading rates depend explicitly

on time we shall define a non-dimensional time t in terms of the dimensional
*

time (sec) t as follows:

o3t*
ce 3t

t 0 (3)

13
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"In terms of the typical values of parameters given in Section 5, t 1

corresponds to physical time t about 2.5 seconds.

6.1 Two-Dimensional Newtonian Drops

The discussior here relates to a Newtoniax, constitutive model in which

the viscosity V0 is constant, but should be regarded for purposes of

comparison as the zero-shear-rate viscosity of the real liquid.

Figures 2a and 2b show the shape of the drop at various instants of

time t for the case V - 0.75, C - 1, X - e - B - 0. In Figure 2a the

final angle 0F - 0.5 and so the drop shape approaches a static equilibrium

as t - -. In Figure 2b, the final angle eF w 0 and so the drop spreads

indefinitely. These Figures refer to the early stages of the drop's spread.

By contrast we illustrate in Figures 3a and 3b the shape of the drop when

substantial spread has occurred. In these two Figures we have taken

0 F - 0, C - 1, X - e - B - 0, and we show the shape of the drop when t - 0

and when t t(2) , where t(2) is the time for the drop to spread to a

size twice its initial radius. We shall call a(t) the radius of the drop

even though in two dimensions it is really the half-width of the drop.

Note that a(O)/a 0 - I by definition. In Figure 3a we have taken V - 0.75,

while V - 1.0 in Figure 3b.

Graphs such as the above give qualitative information but quantitative

predictions must be extracted.

First, we examine cases, .F - 0, for which the drop spreads indefinitely.

We set ) - B - 0 and examine t(2) as functions of both C and V.

Figure 4 shows versus V for several values of C. The spreading rate

depends strongly on the volume of the drop (for fixed initial ccntact

angle 0o0) large drops spread faster than smaller drops. Also, for a

fixed volume of liquid the time it takes to double the initial radius

14
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o t " 023

-C.

.. x

Figure 2a: Two-dimensional drop, shapes in early stages of spread for

V " 0.75, C - 1, X " £ " B 0, %F 0.5
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.C . t - ."

&.N b.. b.u b.75 1.2, '1 .2 ',.5 ,.75 2.38
x

Figure 2b: Two-disenmional drop, shapes in early stages of spread for

V "075,, C 1, B - , eO 0 0.0
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0 .2 -- -.- t -t(II),
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Figure 3a: Tw-dimensional drop, shapes at t 0 and t - t(2) for

V - .7;i, C" 1, A " " B - 0
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0.6

0,4

0.2-

o L.. .. .. I ... .. .. . . .. I , .. . .. x
0 0.5 1.0 1.5 2.0

Figure 3b: Two-dimensional drop, shape at t - 0 and t - t(2) for

V 1, C 1, E - - B "0
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(2)

44

40

36

32

28

24

20

16

12

S.. .I ... I I

0.7 0.8 0.9 1.0

Figure 4: Two-dimensional drop, doubling time an a function of V for

various C, with c X a B w 0
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of the drop is larger the smaller the value of C. C decreases with surface

tension o and increases with zero-shear-rate' viscosity.

Figure 5 shows the doubling time t(2) as a function of the capillary

number C in the case V - 1. Figure 6 gives the radius a(t) versus t for

various values of Vs here for C - 1, Figure 7 shows the radius a(t) versus

t for various values of Cs'hers for V - lo Thusp Figures 4 and 5 sumnarize

the data of Figures 6 and 7.

In Figure 8 we extend, on a different scale, the variation of a(t)

with t in the case V a 1, C - 1.

We now examine the case for 0F 0 0. Although the case 0 - 0 is of

most interest for CSL, we used cases for 6F • 0 as tests of the numerics

and we present some of the results, here.

We confine our attention to A - e - B - 0 and take 0F 0.5. Figure 9

shove the radius of the drop as a function of time for various V with

C a 1. The vertical lines are the asymptotes valid for t + .. Thev:e seems

to be little qualitative difference between cases eF = 0 and 8¥ F 0 until

one approaches times large enough that the finite equilibrium is closely

approachad.

6.2 Axisymmetric Newtonian Drops

Figures 10-14 give for the axisyImetrie drop the information equivalent

to Figures 4-8 of the tvo-dimenaional drop. The same trends persist here

as in that case. Spreading is more rapid for large drops that have large

capillary numbers. However, we do see that axisymuetric drops spread

more slowly than their two-dimensional counterparts. For example if

C a V 1 1, t(2) - 13.0 for the two-dimensional drop while t(2) 27.2

Sfor the ixisymmetric dr6p.

20
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*~ t(2)

.5 20

B 0
10

Bw I

B,2

I( II0 I0 I0
10 10 110 2 C

Figure 5: Two-dimensional drop, variation of doubling time vith C

for various B, V - 1, • - ), , 0
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24-

1 V -0.75
20-

16- 0.75

12 - 1.00

4--

0 a /ao
1.0 1,5 2.0

Figure 6: Two-dimensional drop, variation of radius with t for various

V, with C -1, F -0B- 0
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C 0.1
28-

24-

20 - 0,5 1.0.

A 5.0

12

8

4

0 1o/o
1.0 1.5 2.0

Figure 7: Two-dimensional drop, variation of radius with t for various

C, with V -1, 0 F 0, c - - B U 0
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.Figure 8: Two-dimensional drop, time rate of change of radius 0or various

B, with C 1 , V 1 , C ; 0
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:1 68

64

60

56
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w 48-

44-

40-

36-

32

28-

5.0

20 V
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Figure 10: Axisynuietric drop, doubling time as a function of V for various

C, with c X B 0
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40
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B 0

20- B I
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I0 0 I IO101 0 tO i C

Figure ll: Axisymitric drop, doubling time variation with C for

various B, with V- 1, € 1 0
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Figure 12: Axisymnetric drop, vaiiation of radius with t for various V,

with C 1, 0,- O " - B = ' 0
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Figure 13: Axisynmetric drop, variation of radius with t for various

C, with V - 1, 0 - - - B - 0
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Figure 14: Axisymetric drop, time-rate of change of radius for various

B, with C - 1, V - 1, c - - 0
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6.3 Two-Dimensional Viscoelastic Drops

The constitutive model used here contains a single relaxation time

which enters the governing equations through two parameters, tle

relaxation parameters A and e. Recall that X is formally much smaller

than E by a factor 80.

We now present spreading curves for non-Newtonian cases and compare

these with the corresponding Newtonian cases. Figure 15 shows the radius

of the drop as a function of t for three cases with C a V - 1, B - 0,

8F - 0.5. There is the Newtonian case e - A - 0, a stress-relaxation

case e - 0, X - 0.5 and a shear thinning case c - 5.0, X - 0. Firstly,

we see that for equal values for the material relaxation time T and for,

say, 60 M 0.1 that E - 1OX and the effect of shear thinning is much larger

than that of stress relaxation. Shear thinning causes the drop to spread

faster than the corresponding Newtonian drop given that the two have

equal zero-shear-rate viscosities. For example in the present example

the viscoelastic drop reaches 150% of its initial radius when t - 4.0

while the corresponding drop for A - 0 reaches this position at t - 6.4.

If stress relaxation only is considered, the drop spreads more slowly and

attains 1507 of its initial radius at t - 6.8. Rather than pursue ranges

of parameters here, we turn to the axisylmetric drop and confine our

attention to the principal case, A = 0, c 0 0, in which shear-thinning

only is present.

6.4 Axisymmetric Viscoelastic Drops

Figures 16-18 give results for drops that have significant shear-

thinning effects = 5.0, vanishingly small str7sS relaxation A 0 and

final contact angle 0 - 0 so spreading continues indefinitely. Gravity

31
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Figure 16: Axisy.uetric drop, variation of radius with t for shear-thinning

and non-shear-thinning cases, with C - V - 1, B - 0, F - 0
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is ifiored, B 0- , and a range of capillary numbers C and drop volumes

V is examined.

Figure 16 gives the radius a(t) of the drop as a function of time

for B - A - 0 and C = V - 1. There are two cases shown, one for the

Newtonian drop with e - 0 and one for the viscoelastic drops with e - 5.0.

We see that t(2) decreases by about 15% due to shear thinning.

We can compare the viscoelastic cases to the Newtonian cases by

t (2)

R (2) VISCOELASTIC (4)t(2)
NEWTONIAN

The quantity R( 1 '5) is the similar ratio for a 50% increase in radius.

Figure 17 shows R(2) and R(105) for the case B - 0, V - C - 1 where

the right side of the figure shows shear-thinning effects only £ c 0,

0 - 0 and the left side shows stress relaxation effects only, £ - O A 0 0.

"I On one hand we again see that shear thinning has a larger effect than does

stress relaxation. On the other hand there is a "catch-up" phenomenon

present. The largaut effect on spreading of viscoelasticity occurs at

early times t. However, not only does viscoelasticity have weaker effects

later but the differences in spread rates become smaller as time passes.

Notice that R is nearer to unity than is R(15). Thus, viscoelastic

drops that have had a long time to spread have attained nearly the same

radii as their Newtonian counterparts. Figure 18 shows equivalent informa-

tion for the case B - 0, C - 0.1, V - 1. Notice that the effects of visco-

elasticity are much smaller here for C - 0.1 than for the earlier case for

C - lo0.
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6.5 Effects of Gravity on Newtonian Drops on Horizontal Planes

When a drop spreads on a smooth horizontal plane, gravity modifies

the shape and spreading characteristics of the drop.

Figure 19 shows a two-dimensional Newtonian case for C - I, V - 0.75

and B 10 at various times t. A comparison of these curves with those

of Figure 2b for the equivalent case with B - 0 shows that gravity

steepens the interface near the contact line which leads to more rapid

spreading. Similar behavior can be observed in Figures 20a and 20b, which

are the direct analogs of Figures 3a and 3b respectively for the case B - 10.

Figures 21 and 22, respectively, show a(t) versus (t) for various

values of B for two-dimensional and axisymmetric spread. Notice for

B - 1.0 that R(2) - 0.76 for the two-dimensional drop and R(2) - 0.84 for

the axisymmetric drop so that there are comparable accelerations of

spreading in both geometries due to gravity. Effects of gravity are also

indicated in Figures 8 and 14, which give long-time spreading behavior,

and in Figures 5 and 11, which show how doubling-time varies with capillary

number.

6.6 Effects of Gravity on Newtonian Drops on Tilted Surfaces

A drop sits on a plane tilted an angle a to the horizontal. The

component g eos 8 of gravity normal to the plate leads to a Bond number

B cos B whose effect was discussed in Subsection 6.5. The component g sin 0

of gravity "alides" the drop bodily down the plate as discussed by Hocking

for the two-dimensional case with C - w.

"Tha wetting properties for C < - shown in Figure 1 allow the drop to

make an initial adjustment in its shape to accommodate to a steady

Quart. J. Mech. Appl. Math. 34, 37, 1981
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translation. This accommodation takes place as follows. Initially, the rear

BACK FRONTcontact angle is 0A0 and the forward contact angle is 0R . If

0 FRONT < e (advancing) angle) and 8 BACK < 0R (receding angle) then both0 < A 0avnig Rnl)ad0

contact lines move. If, according tc Figure 1, the corresponding contact-

line speeds are equal, then the drop "slides" down the plane with constant

shape. If, for example, the front contact line initially moves faster

than the back one, the hydrodynamics causes the front angle to become more

shallow slowing that contact line and the back angle to become more shallow

speeding that contact line. The result tends toward the steady sliding

case. Clearly, other cases also "rearrange" and approach the steady

sliding case as along as 0 R > 0.

The net result of these observations is that the component of gravity

along the plate has only indirect effects on spreadtng characteristics

since it merely adjusts the contact angles. The component of gravity

normal to the plate directly affects spreading as discussed in Subsection 6.5.

7. CONCL ,IONS

The ctiaracteristics of Newtonian liquid drops spreading on smooth

horizontal solid planes can be characterized by the non-dimensional groups

V and C listed in Section 5. The intrinsic spreading and capillary effects

are contained in the capillary number C; C is large if the zero-shear-rate

vitcosity is large or the surfade tension is small. The bulk features

of the drop are contained in the volume V. The drop spreads more rapidly

if C and V are increased.

The viscoelastic effects of the drop are characterized by the parameters

X and c listed in Section 5. Both X and e measure the (single) relaxation

time of the material though these are interpreted as stress relaxation

and shear-thinning measures, respectively. For small contact angles
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c >> X so that shear thinning, if present:, is much more important than

stress relaxation.

We find that shear thinning is the dominant viscoelastic effect in

thin drops. It has its greatest effects at small times (the drop begins

spreading at t w 0). For example shear thinning can accelevate the spreading

rate by 50% after a few seconds if c - 5.0. flowever, there is a "catch-up"

phenomenon that makes the spreading rate for long times very nearly that

appropriate to the Newtonian drop having the same zero-shear-rate viscosity.

The main conclusion one draws from the present study is that the

principal rheological poperty of interest in the spreading mechanics of

drops on smooth surfaces is V0, the zero-shear-rate viscosity. Thus for

large ranges of material of interest to CSL, polymer additives greatly modify

PO and spreading is controlled by V0.

The second most important rheological property is the variation i(Y)

of shear viscosity with shear rate Y. 'In the calculations presented we

used the estimate T - 1 sec for the maximum value of material relaxation

time. Under most practical circumstances for CSL £O0.01 though it can

in extreme cases get as large as cE 5.0. Even for e - 5.0 we found rather

modest acceleration in the spreading rate (compared to the case ' - 0 with

the same U); small values of c yield only minor accelerations. Hence,

viscoelasticity affects spreading in a calculable way but its magnitude is

seemingly small.

The effect of a vertical gravity on the spreading of a drop on a smooth

horizontal plate is characterized by the Bond number B defined in Section 5.

Vertical gravity distorts the shape of the liquid-air interface, steepens

the contact angle and thus accelerates the spreading process. The effect

is appreciable for large drops and negligible for small drops.
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A drop on an inclined plane tilted an angle B to the horizontal has

a component of gravity normal to the plate that affects spreading, as above,

through a Bond number B cos $. The component of gravity down the plate will

result in the drop having steeper contact angles in front and shallower

angles in the rear. The relations between these changes affect the spreading

somewhat but principally lead to the drop moving bodily down the plate but

not experiencing major changes in spreading rates.
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APPENDIX

1. Formulation

2. Lubrication Approximation

3. Evolution Equation

4# Solution Procedure
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1. Formu lation

We consider a drop of viscous liquid on a smooth rigid horixontal
I * **)

plane. We use a Cartesian coordinate system (x ,y ,z for a two-dimensional

drop, and a cylindrical polar coordinate system (r , *z*) for an axi-

synmetric drop. In both cases we take the rigid plane to coincide with
*t,

the plane z - 0, with the z axis pointing vertically upwards.

In the case of a two-dimensional drop we consider the motion to be in the

x ,z -plane, with all quantities independunt of y . Equations and rela-

tions pertaining to the two-dimensional case are designated by the letter P.

For the axisymmetric drop all quantities are independent of the azimuthal,

coordinate * ; this case will be designated by the letter A.

Initial State

In the two-dimensional case the initial-shape of the drop is taken

to have the form

z* o(** *
" h , - a0 < x < a0 (0.lP)

with the end conditions

ho(-& ) - h;(ao) * 0 (.,J2P)

The initial contact, angle %0 is given by

Ah* do*
tan 8 0 - --* (-a 0 ) - - d h* (1.3P)dx* ~dx*

The in;,tial volume per unit length (in the y* direction ) is

a
V* W r ho (x *)dx* (1,4P)

In the axisymmetric case the abovo initial data are replaced by

h 0 ho(r*) 0 < 0 (r.aA)
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-•• with

wt h 0 o (1.2A)

the contact angle 00 is given by

dh*
tan 0 -- (ao) , (1,3A)

0 dr 0

and the volume is
S and

V - 21 rf*h(r*)dr* (1,4A)
0

Drop DRpimics

At time t > 0 we denote by a (t*) the half-width of the drop in the

two-dimensional case and its radius In the axisymmetric c&se. Thus we

have the initiel condition

a (o) - no (1.5)

We take the shape of the drop at time t to have the form

• ,• -1 h*(x*,* , OtC* < x < a*(t) (1.6P)

with

h (-a(t*),t - h*(a*(t*),t*) - 0 (1.7P)

in the two-di mnsional case, snd

-- Iz h h(V St* 0 0. :!Lr < -j*(t*)(.A

with

h*(a*(t*),t*) - (1.7A)

in the axisym etric case. The contact angle at time t* is denoted by•I* (*)*

0 0 (t ), and is given by
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tan 0 (-a (t*), t (a*(t*),t*) (l.8P)
ax • x

or

tan 0* h (a*(t*),t) (1.8A)
;r

respectively. Conservation of the volume of the drop over time gives the

additional constraint

a*(t

V h*(x*,t*)dx* (1.9P)
-a '(t*)

or
a* *a(t )

V 7 (r*,t*)dr (1.9A)
* *2 'h0

The rate of change of the quantity a at any instant t is taken s on

empirical grounds, to be proporLional to the difference between the angle

* and the advancing contact angle eAs The latter is the static equilibrium

angle when the drop is on the point of spreading. The implied relation has

the form

4at K(* - (1.10)

where K > 0 is an empirically determined constant, and where OA > 0.

E uations and Boundary Conditions"

The motion is governed by the Navier-Stokes and continuity equations,

-+_ v V vVp +VS - Pg'_ (1.11)

V**v 0 (1.12)

where p is the density, v - (u ,Ow ) is the velocity rector, p is the

pressure, S is the extra-stress tensor, g is acceleration due to gravity,
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and z is unit vector in the upward vertical direction. A constitutive

relation between the stress and the deformation-rate will be given

below.

The boundary conditions are:

(i) The normal velocity component is zero on the rigid plane;

w -0 on z " 0 (1.13)

(ii) As exp~lained by Dussan V. and Davis '[11], the usual no-slip condition at

the rigid boundary needs to be modified to avoid the appearance of a

singularity at the contact line. Following Greenspan (2] we take the

condition to be

*2 * h*u* *
0/ 3 h on 1 3wO (1.34)

where p 0is the zero-shear-rate viscosity$ Y is a slip length (distance

from the contact line over which slip takes place) and S represents the

x z -component of extra stress in the two-dimensional case, and the

r z -component in the axisymmetric case.

(iii) The kinematic condition at the free surface is
* @h *h* * Dh

w + u ---- on z =h(xt) (I.15t)

or

w on * h*(r*ut*) . (Oh5Ai)

(iv) The dynamic boundary condition at the free surface is

- [p ]n + In - 2H cn on z (1.16)

where [p*] denotes the pressure difference across the interface, a is the
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surface tension, a is the outward unit normal to the surface, and 2H

is the mean curvature of the interface.

Rheology

A constitutive equation that is suitable for polymer solutions is the

generalized Maxwell model,

s* • * * * i ~.s* * *

+ r<- +(v.V)s + .
at

- a (4 + - (1.17)

where

V v (Vv_)T (1.18)

* **
Vv" - •V*T(1.19)

T ts the relaxation time of the liquid and 0 Is a number, which in practical

situations can range between -1 and +1. (See, for example, Petrie [3].)

Rather than analyze the whole range of values of f, we shall consider only

two special cases, namely 0 - 0 and 0 - 1. When 0 - 0 the model (1.17)

reducep to the well-known corotational Maxwell model. In 'steady uni-

directional shear flow this model yields shear thinning and both first

and second normal stress differences, and yields stress relaxation in

unsteady simple shear. When a - 1, (1.17) reduces to the upper convected

Maxwell model. Here there is no shear thinning in simple shear, the vis-

cosity remaining constant at its zero-shear- rate value, but first and

second normal stress differences, as well as stress relaxation, are

present. By studying these two models we have the possibility of assessing

the various rheological effects on spreading; in particular the differences

between the 0 - 0 and 0 1 case will, distinguish the influence of shear

thinning.
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2. Lubrication Approximation

We proceud on the basis of the assumption that the initial angle 80

is very small. This et-ables us to use the lubrication approxi-

mation, in which all quantities are appropriately scaled, and then tb0

equations and boundary conditions are expanded in powers of 60. The first-

order problem is what is retained in the limit e0 + 0.

A dimensionless time t is defined by

t * 3 / (2.1)t-t•0 a0 0

and dimensionless coordinates (xz) in the ...wo-dimensional problem, and

(r~z) in the axisyamietric problem, are defined by

x*/ *Io0 *la
x - x , /& z a- z(a ) , r - r  . (2.2)

The dimensionless shape of the drop becomes h(x,t) or h(r,z) respectively,

where

h = h* /(ao 0 ) • (2.3)

The half-width (radius) of the drop is a(t), given by

a(t) - a *(t* /a 0  (2.4)

and the contact angle is

0(t) ,- *(t*)/00 (2.)

with the final equilibrium (advancing) contact angle given byI
' F = 0A/00 . (2.6)

We also define a dimensionless volume by

V V 2/a 2 0 (2.7P)

0 0

or

. //a030  (2.7A)
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Dimensionless velocity components (u,w) and pressure p are given by

* w* 2) *aoo0)
u-U l(K0o) , w- w (e , p - p (a08h I010 . (2.8)

Finally we have a dimensionless stress tensor S defined by

- . (ao/oK) . (2.9)

Initial State

Noze that our non-dimensionalization gives that the drop has unit

half-width'(radi-,;) initially, and the initial contact angle e(0) is

also unity.

In the two-dimeasional case the initial shape has the form

z w h0 (x) , -1 < x < (2.10P)

with the end conditions

h0 (-l) - hO(l) -o . (2.11P)

Using the lubrication approximation e0 + 0 we find the condition for the

initial ccntact angle to be

dh dhC
dx (2.12P)

We also have the volume condition

V h 0 (x)dx (2.13P)
•-l

The analogous expressions in the axiasymmetric case are

z inA0 (r) 0 < r < (2.10A)
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with)

h0 (l(1) 0 (2.11A)

at the contact line

dh0
d" () (2.12A)41

and

, 27frh(r)dr (2.13A)

0

Drop Dynagics

The shape of the drop at time t in the two-dimensional case is

z = h(x,t) , -a(t) < x < a(t) (2.lAP)

with

h(-a(t),t) - h(a(t),t) - 0 (2.15P)

while in the axisimnetric case it is

z - h(r,t) , 0 < r < a(t) (2.14A)

with

h(a(t),t) - 0 . (2.15A)

In the lubrication approximation the contact angle e(t) is given by

h{t - h(-a(t),t) -,- h X(a (t)It) (2.16P)

e (t) - h r(a(t),t) . (2.16A)
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The volume conservation condition (1.9) becomes

aVt) h(xt)dx

V (2.17P)

-a(t)

or

a(t)

V 27r rh(r,t)dr (2.17A)

0

Equations (1.10) and (2.16) combine to give the following.differential

equation for the dynamics of the drop:

da(t C[-h (a(t), t) 0eF](2.18P)" •-dt " F]

or

dt Ut C'-h (a(t)'t) aF] (2.18A)

where C is the capillary defined by

C 2 (2.19)ONO 2
06

Equation (2.18) is subject to the initial conditions

a(0) - . (2.20)

Equations and Boundary Conditions

In the lubrication limit 00 0÷ 0 the Navier-Stokes and continuity equa-

tions in the two-dimensional case reduce to

" Px + Sl3,z - 0 (2.21P)

"- Pz B/C - 0 (2.22P)

u x + w z 0 (2.23P)

where S1 3 is the x,z component of the stress tensor, and where B is the

Bond number defined by
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pga2
B - . (2.24)

Note that S13' which is associated with shear thinning in viscoelastic

materials, is the only stress component that remains in the reduced system

(2.21)-(2.23). Components such as S1 1 , $22' S33 associatedwith normal

stress differences, are not explicitly present in the equation of motion

in the lubrication limit.

The corresponding equations in the axisymnetric case are

"- pr + S13,z M 0 (2.21A)

"- P B/C - 0 (2.22A)

(ru) r + (rw)z 0 . (2.23A)

The boundary conditions are:

(i) zero normal velocity at the rigid plane

w - 0 on z-W 0 (2.25)

(ii) modified slip condition at the rigid plane

Y2S 13 - hu on z - 0 (2.26)

where

a (/*/ea00) 2  (2.27)

(iii) kinematic interfacial condition

ht + C(uhx -w) - 0 on z - h(xt) (2.28P)

or

ht + C(uhr -w) - 0 on z - h(r,t) (2.28A)
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(iv) dynamic boundary conditions on the interface are

h + Cp - 0 on z - h(x,t) (2.29P)XX

or
1

hrr + h + Cp -0 on z -h(r,t) (2.29A)
rr r r

and

S 0 on z h (2.30)

Rheology

Using the scalings indicated above we find that the constitutive

relation (1,17) becomes, in dimensionless form,

at(O) (ss) + i -j) (2.31)

where in the lubrication approximation

k~u ~ ~ \u0)(2.32)

and where X$ 0 are relaxation parameters defined by

,ro03
_ _=. . . (2.33)

o 00

a02
0 (2.34)

aoU -

Note that

A/c a 90 (2.35)

The form of (2.31) shows that X is a measure of stress relaxation while 6

Is a measure of shear thinning, Hence (2,35) implies that stress relaxation

only becomes important when shear thinning is absent.
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The components of equation (2.31) are

S +C{ at -S1  0 (2.36)
11 "u.S13 " 1u 3

+ X DS13 + C{ -$3) -u } - uC (2.37)13 a 233 uz(Sll - (1+'33)1 ,

S + X$33 +.CC {u s 1 3 - u S13)J -0 . (2.38)

When,. - 1 (upper convected Maxwell model) we obtain S33 - 0 from (2.38)

and then (2.37) reduces to

3+ A - W (2.39)

In this model only .tress relaxation is relevant, and there is no shear

thinning.

When 0 - 0 (corotational Maxwell model) we neglect X'by virtue of (2.35)

and the system (2.36)-(2.38) reduces to

S11 - CCUzSI 3 S 0 (2.40)

S1 3 +2 z11- m33 uz (2.41)

S33 + CCU zS13 ' 0 (2.42)

From these we obtain

U

S213 2 I + C2C2u (2.43)

which implies that the effective viscosity for simple shear is

1 2+ 2u2 
(2.44)1 + F-2Cu

z
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3. EVOLUTION EQUATION

In the two-dimensional case we integrate (2.23) and use the boundary

conditions (2.25) and (2.28) to obtain the equation

-h + C a,(hQ). 0 (3.1?)

where

hQ m(xz,t)dz (3.2P)f.
0

From integration of (2.22P) we obtain

p u p(x,t) - Bz/C (3.3P)

so that the boundary condition (2.29P) gives

hx + Cp(x~t) -Bh - 0 (3.4P)

Substituting into (2.21P),we obtain

h - Bh + S 0. (3.5P)

xxx x 1,

Integrating this with respect to z and using (2.30) we obtain

CS 1 3 - (hxx - Bh )(h - z) . (3.6P)

An analogous procedure for the axisynuetric case leads to the analog

of equation (3.1P), namely

h(r,t)
-- -a r ru(r,zt)dz - 0 (3.1A)

at r Drj
0

while the analog of (3.5P) is found to be

(h + Bh) + c C 0 (3.5A)a'r hrr +r " l1,z

Integration of this gives

CS, - (h-z) 2- (h + t h *'Bh) (3.6A)
13 Br rr r r
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The next steps depend on which of the constitutive relations (8 = 0

or 1 = 1) is being used.

Upper Convected Maxwell Model ( 1 -. )

We substitute (3.6P) into the constitutive relation (2.39) to obtain

•i "Cu' = (h) (h -z) + -a f (Uh)(h- x) (3.7p)

where

Gh -'h3=x - Bh x .(3.8P)

Integrating (3,7) with respect to z and using the boundary condition

(2.26) we obtain

Cu 0 (Gh)(y + ha - 2 2) + X i (Gh)(hz-I w2) } (3.9P)

We integrate again with respect to z over 0 to h. This gives, in the

notation of (3.2P)p

ChQ - (Gh)(y'h + ~h) + 2 (Gh)h] +h 2 (Gh)h~t . (3.101P)

We now substitute this into (3.IP), which becomes

h~ +. {(Gh)(YA + 1. h 3) + X. ((Gh)h 3 ]~ + X h2 [(Gh)hl, 0 .(3.11P)

This is to be solved subject, to the initial condition

h(x,O) - ho(X) , (3.12P)

tho boundary conditions (2.15P) and the constraint (2.17P). In addition

we assume that ho(x) and h(x,t) are symmetric about x = 0.

The axisymmetric analog of (3.7P) is

CU~ (Dh) (h -z) + X 3. (Dh) (h -z) (3.7A)

where
a 1

Dh - (h + hr -Bh) • (3.8A)
Arp i
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After two integrations and application of the boundary condition (2.26)

we obtain

h(rt)
rudz r(Dh) (y'h + r (Dh)h] + rh+ h2[(Dh)ht+ r Ldz = r(Dh) 4L•Jt

(3.10A)

and then (3.1A) becomes

ht + 1 ra- t-r(Dh) (y2hn + 13 h3) + Lr [(Dh)h3jt + 1 rh 2 [(Dh)h]tJ " 0

(3.11A)

The initial condition is

h(rO) w ho(r) , (3.12A)

and we have the boundary condition (2.15A) and the constraint (2.17A).

We assum also the symmetry condition

dh 0

-. (O) 8h (Opt) -o0 (3.13A)

Corotational Maxwell Model (0 - 0)

We combine (3.6P) and (2.43) to obtain

Cu
2. 2 202u (Gh)(h -z) -F ,say (3.14P)

z

from which we deduce that

1.- M 1 -a4c (3.15P)

As is usual in flows with shear thinning a solution ceases to exist if

c: is too large. We assume C to be sufficiently small that an expansion

of (3.15) is possible, whereupon we obtain

Cu = (Gh)(h-z) +e 2[(Gh)(h-z)]3 + O(4) . (3.16P)
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Integrating and using the boundary condition (2.26) we obtain

Cu 0 (Gh){y2 +Ih - 1 (h-z)2 + 12(Gh)3 h4- (h-z)4 . (3.17P)

Integrating again over 0 to h, we obtain

ChQ (Gh)(y 2h + 1h3) + I c2(Gh)3 hS (3.18P)3,5

Substituting into (3.1P) we now obtain

h +•a--{(Gh)(yh +1h3). +I2(Gb)3h5 0 (3.19P)t ,x 3 5

For the axisye~tric cas an exactly analogous procedure leads to the

equation

h4 D) y2 + h )+ t r(Dh)3h r 0 (3.19A)
ht + ar

with conditions (3,12A) and (3,13A),

It is convenient to transform to a moving frame in which the position

of the contact line is fixed. We set

- A " x/a(t) (3.20P)

in the two-dimensional case, and

r/a(t) (3.20A)

in the axisymietric case, In both cases the interfacial shape is given by

- h(ot:) (3.21)

defined on

1< < I (3.22P)

or

S<• < 1 (3.22A)

respectively.

Appendix 63



For the motion of the drop the equations (2.18) and (2.20) become

da (t) C [-h (it)/a(t) - F (3.23)

with

a(0) -l . (3.24)

The various forms of the evolution equation are transformed as follows:

Equation (3.11P) becomes

,a

where(6h) k t (Yla + L h) + C2 ((h)h3  + !-h'[((h).h] 0(3.26P)
Swer C. - b(t)C - (3.26)

dt
b(L) =t •Rn a(t) (3427)

Gh h BA h C (3.28P)

Similarly equaition (3,11A) bqtcomeu

:Ch + + a ~f C(fih) (Y 2h + -1 h) + !L r(6h) h+ h J h[(Dh)h]

(3.25A)

where

Bh htC+ h - Ba2h } .(3.28A)

Sqtation (3,19P) for the ccrotational model becomos

I a-+3 + A 3h 51{((^h) (Y 2 h + 'h) +f G(h)~h} (3.29P)
a 5a

while (3,19A) becomes

-Ch + L+ (6h)(-y 2 h + L h') + _L_ & 1h ' 32A

ah 3 6 ~- 3 2 A
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The initial conditions are

h(tO) - hOW (3.30)

wh~ere

ho (t) W ho(x) , <1 x< 1 (3.31P)

or
ho(g) -=ho(r) O<_.r < (3.31A)

* and the constraints (2.11)-(2.13) apply to the initial shape. The boundary

conditions (2.15) become

h(-l,t) = h(l,t) = 0 (3.32P)

or

h(1,t) = 0 . (3.32A)

The volume conservation condition (2.17) becomes

-1V~t " h(4 9t)dt (3.33P)

in the two-dimensional case, and

1
V 2wf •h(tot)dt (3.33A)

a2 (t) "J0

in the axisymmetric case., We impcse also symetry conditions at • = 0.
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4. SOLUTION PROCEDURE

The problem posed in the previous Section is solved by transforming

the evolution equation (3.11) or (3.19) into a system of ordinary di.ffer-

ential equations in the time t. This is done by use of the Galerkin method.

In the two-dimensional case we define functions

1 (1_ 2)n n - 0,1,2,o..hn(•) -(4.1)
n0 n n<0

for integer values of n. Correspondingly we define

1
U w ý h n(C)dC n > 0 (4.2P)

-1

These are then given by

a0 -2 , an - 2n+ In-l ' n > 1 . (4.3P)

Next we introduce the Galerkin expansion

N+1
h(tt) - k1•k(t)hk(() (4.4)

where the k are unknown functions of t. We refer to (4.4) as an N-term

Galerkin expansion, since one of the V's, namely ON+10 is fixed in terms

of 0'1)..PON through the volume corthervation condition (3.33). In fact,

substituting (4.4) into (3.33P) we obtain

N
a N+lON+l(t) - V/a(t) - k , kk(t) o (4.5P)

All the boundary conditions and constraints on h are satisfied by the

representation (4.4)-(4.5).

With the aid of (4.4) we construct a system of N + 2 ordinary differ-

ential equations for the functions Fl(t),...,tN+l(t),a(t). First we have

that (3.23)-(3.24) become
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C C[ 2(b!a - eF] (4.6)

with

a (0) -1 .(4.7)

Next we have frori differentiation of (4.5) the equation

N

~N+1 N+l Akf + (4.8P)
k=3.

where b is defined by (3.27). Then we substitute (4.4) into the appropriate

evolution equation, multi~ply by h n(t) for a - 1,2,..,,N and integrate over

(-I,+I) with respect to C. In the case of the upper convected !4uexwell

model evolution equation (3.25P) this gives the following system of N

ordinary differential equations:

(6)(- h+ L tC[(h)h + h2 C~h)hl}} 0

(4.9P)

n - i•2,-*'"N, where <-> denotes the inner product

1
<h£ -f hn(ý) f(Q)dý (4.10)

-1

We now have N + Z equations, namely (4.6), (4,8P) and (4.9P); they are

evidently highly, nonlinear. The !ondition (2.12P) on the initial slope

gives th'a initial condition

Ylo) = (4.11)

The fact that we wish to allow for the drop to have arbitrary initial shape

is expressed through the initial data

p 2(O)p-eniO) arbitrary (4.12)
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Finally we have from (4.5P) that

N
SN+l0N+1(0) - V - a •koVk( 0 ) (4.13P)

k-l

Thus we have a total of N + 2 initial conditions: (4.7), (4.11), (4.12)

and (4.13P).

.In the case of the corotational Maxwell model (3.29P) we follow the

saw procedure and obtain in place of (4.9P) the system

a <h + (h)(y~h+# h 3 )+ - (6h)•h' 0 n -14...N
5a6

(4.14P)
The other equations and the initial conditions are as before.

In the axisymmetric case we again use the system of basic functions

(4.1). We also define

1

0n Ofthn(C)dC , n > 0 (4.2A)
0

which gives

Sn > 0 . (4.3A)

The Galerkin expansion (4.4) is again used. The volume constraint (3.33)

now takes the form

V N

N+ION4Vl(t) -? k Ok~k( 0 (4.5k)

Equution (4.b) and the accompanying condition (4.7) retrain applicable.

In place of (4.8P) we dxffercntiate (4.5A) to obtain

N VbBN+l N+I + ý=lOk~k + -•-2 0 (.A

k4 ira
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The evolution equation (3.25A), ai!.er integration, becomes

\I h2 h+hLh E !C(h)h3]

+ h Dh)h 0 , n - l,...N (4.9A)

where the inner product is defined by (4.10). The evolution equation

(3.29A) becomes

a~hth> + <[n I (h (y 2 h + 1. h') + 6 (Dh) h~ 0_n 5h3 a

n m l,"',N . (4.14A)

The initial conditions (4.7), (4.11) and (4.12) continue to apply, while

(4.13P) is replaced by

S N

SN+10N+1(O) - V i k(0)A)
k-l

The respective systems are solved numerically using a modified

standard package called DGEAR.
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